题目:
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明:
假设你总是可以到达数组的最后一个位置。
解答:
解题思路
这道题是典型的贪心算法,通过局部最优解得到全局最优解。以下两种方法都是使用贪心算法实现,只是贪心的策略不同。
方法一:反向查找出发位置
我们的目标是到达数组的最后一个位置,因此我们可以考虑最后一步跳跃前所在的位置,该位置通过跳跃能够到达最后一个位置。
如果有多个位置通过跳跃都能够到达最后一个位置,那么我们应该如何进行选择呢?直观上来看,我们可以「贪心」地选择距离最后
一个位置最远的那个位置,也就是对应下标最小的那个位置。因此,我们可以从左到右遍历数组,选择第一个满足要求的位置。
找到最后一步跳跃前所在的位置之后,我们继续贪心地寻找倒数第二步跳跃前所在的位置,以此类推,直到找到数组的开始位置。
使用这种方法编写的 C++ 和 Python 代码会超出时间限制,因此我们只给出 Java代码。
class Solution {
public int jump(int[] nums) {
int position = nums.length - 1;
int steps = 0;
while (position > 0) {
for (int i = 0; i < position; i++) {
if (i + nums[i] >= position) {
position = i;
steps++;
break;
}
}
}
return steps;
}
}
复杂度分析:
时间复杂度:O(n^2),其中 n 是数组长度。有两层嵌套循环,在最坏的情况下,例如数组中的所有元素都是 1,position 需要遍历数组中的每个位置,对于 position 的每个值都有一次循环。
空间复杂度:O(1)。
方法二:正向查找可到达的最大位置
方法一虽然直观,但是时间复杂度比较高,有没有办法降低时间复杂度呢?
如果我们「贪心」地进行正向查找,每次找到可到达的最远位置,就可以在线性时间内得到最少的跳跃次数。
例如,对于数组 [2,3,1,2,4,2,3],初始位置是下标 0,从下标 0 出发,最远可到达下标 2。下标 0 可到达的位置中,下标 1 的值是 3,从下标 1 出发可以达到更远的位置,因此第一步到达下标 1。
从下标 1 出发,最远可到达下标 4。下标 1 可到达的位置中,下标 4 的值是 4 ,从下标 4 出发可以达到更远的位置,因此第二步到达下标 4。
在具体的实现中,我们维护当前能够到达的最大下标位置,记为边界。我们从左到右遍历数组,到达边界时,更新边界并将跳跃次数增加 1。
在遍历数组时,我们不访问最后一个元素,这是因为在访问最后一个元素之前,我们的边界一定大于等于最后一个位置,否则就无法跳到最后一个位置了。如果访问最后一个元素,在边界正好为最后一个位置的情况下,我们会增加一次「不必要的跳跃次数」,因此我们不必访问最后一个元素。
class Solution {
public int jump(int[] nums) {
int length = nums.length;
int end = 0;
int maxPosition = 0;
int steps = 0;
for (int i = 0; i < length - 1; i++) {
maxPosition = Math.max(maxPosition, i + nums[i]);
if (i == end) {
end = maxPosition;
steps++;
}
}
return steps;
}
}
复杂度分析:
时间复杂度:O(n),其中 n 是数组长度。
空间复杂度:O(1)。